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Abstract
Opinions are influenced by neighbors, with varying degrees of emphasis based on their

connections. Some may value more connected neighbors’ views due to authority-respect,
while others might lean towards grassroots perspectives.The emergence of ChatGPT could
signify a new “opinion leader” whose views people put a lot of weight on. This study in-
troduces a degree-weighted DeGroot learning model to examine the effects of such belief
updates on learning outcomes, especially the speed of belief convergence. We find that the
effect of authority-respect is non-monotonic: greater respect for authority does not guaran-
tee faster convergence. The convergence speed, influenced by increased authority-respect
or grassroots-dissent, hinges on the unity of elite and grassroots factions. This research
sheds light on the growing skepticism towards public figures and the ensuing dissonance in
public debate.

Main

In the interconnected web of social networks, people’s beliefs and opinions are intrinsically

shaped by those around them[1, 2]. Not all voices carry the same weight: mainstream media,

celebrities, and traditional authorities have historically held sway[3]. The digital age ushers in

another layer of complexity with tools like ChatGPT, which blend the realms of technological

advancement with societal influence, potentially ushering in a new echelon of opinion lead-

ers[4]. Yet, the shifting sands of public trust, particularly post-COVID, hint at an evolving dy-

namic where traditional experts face increasing skepticism.[5] These developments necessitate
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a theoretical framework that analyzes the implications of both “elite-respect” and “grassroots-

dissent”[6], which is essential for understanding the outcomes of social learning amidst these

evolving trends.

As beliefs evolve, the credence given to others’ views is often tied to their perceived in-

fluence and connectivity within their social network [7]. This phenomenon raises crucial ques-

tions: How does this weighting impact collective learning outcomes? Do beliefs converge faster

when individuals respect authority more or when there is a prevalent grassroots-dissent? These

questions are especially pertinent given the growing skepticism towards public figures and in a

world where authority and grassroots voices clash [8].

To navigate the intricate terrain of social influence, we introduce a degree-weighted learn-

ing heuristic to the classical DeGroot learning model[1, 9, 10, 11], in which agents iteratively

refine their beliefs by considering a weighted average of their neighbors’ current opinions. The

uniqueness of our approach lies in how the influence of a neighbor’s opinion is determined.

We introduce a mechanism where the impact of each neighbor’s view changes based on their

network prominence. This means that we can capture cases in which the opinions of more

prominent neighbors hold greater sway, reflecting a respect for elite. Conversely, less influ-

ence is given to the views of prominent neighbors in other cases, indicating a tendency towards

grassroots dissent. Hence, our model captures the full range of dynamics from a preference for

established elite to a leaning towards grassroots perspectives.

Our findings reveal non-monotonic patterns in increasing authority-respect: a heightened

deference to authority does not necessarily lead to quicker consensus. The speed at which

beliefs converge, whether influenced by authority reverence or grassroots-dissent, pivots on the

unity within elite and grassroots factions[12].

Specifically, in the baseline case with one elite and one grassroots group, the slowest con-

vergence occurs when the influences of the elite and the grassroots are relatively balanced.
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Amplifying either authority-respect or grassroots-dissent accelerates convergence (Figure 1).

Figure 1: One grassroots group and one elite group

Notes: Graph of convergence speed versus the extent of degree-dependence. This graph shows that when there
is one elite group and one grassroots group, either increasing authority-respect (by increasing α from a threshold
to ∞) or enhancing grassroots-dissent (by decreasing α from a threshold to −∞) can speed up convergence.
Specifically, convergence speed is inversely related to the magnitude of the second largest eigenvalue of the learning
matrix T∗, denoted by |λ2(T

∗)|, and the index α measures the degree-dependence of belief updating: a larger α
indicates a greater influence of an individual’s degree in the updating process. When α = 0, individuals weigh
their neighbors’ opinions equally, regardless of their degrees. In the graph, the weighting function is defined as
ϕ(α, d) = dα, where d is the degree of an individual. The size of the first group, n1, is set to 200, 300, and 400, and
the total population size n is 1000. The within-group linking probability p is 0.4, and the between-group linking
probability q is 0.2.

When there is one grassroots group and multiple elite groups (Figure 2a), we witness phase

transitions in the dominant tension hindering belief convergence. In Regime I, where elite

groups are more influential, the predominant tension lies in intra-group conflicts among elites

(e.g., elite polarization [12]). These conflicts within elite groups are the main factor slowing

down convergence, with the presence of the grassroots group acting as a mediator to reconcile

these elite viewpoints. This results in a slower convergence as elite influence becomes more

pronounced. In Regime II, characterized by less dominant elite influence, the tension shifts to

inter-group conflicts between the grassroots and elite groups. Slow convergence is most evident
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when both groups have similar levels of influence, and convergence speeds up as the grassroots

group gains more influence.

Figure 2: One grassroots group and multiple elite groups

(a) 3 elite groups. (b) 3 or 5 elite groups.

Notes: Graph of |λ2(T
∗)| versus α, with ϕ(α, d) = dα, with ϕ(α, d) = dα, n1 = 200, (m − 1)n2 = 1200,

m = 4, 6, p = 0.3, q = 0.1. When there is one grassroots group but multiple elite groups, increasing authority-
respect (e.g., when α → ∞) can lead to slower convergence. As a counterpoint to the scenario with one elite group
and multiple grassroots groups, when α is positive and large, the initial beliefs that lead to the slowest convergence
are those in which elite groups hold differing views from one another. In this case, the grassroots group acts as
an information mediator between the conflicting elite groups. Thus, lowering the weight placed on elite groups
(decreasing α) results in a lower λ2, signifying faster convergence. Conversely, when α is negative and large in
magnitude, the initial beliefs that result in the slowest convergence are those where elite groups share identical
views amongst themselves, yet these views differ from those of the grassroots group.

A phase transition is also observed when there is one elite group but multiple grassroots

groups (Figure 3). When the grassroots groups are relatively more influential, it is the intra-

group conflicts among these groups that matters more. Slow convergence is noted when dif-

ferent grassroots groups (for example, multiple minority cultural or ethnic groups) hold con-

flicting views. As an authority group and/or ChatGPT emerge and gain influence, convergence

occurs more rapidly. This trend continues until the influence of the grassroots and the author-

ity becomes roughly equal, marking a phase transition. Beyond this point, it is the inter-group
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conflict that predominantly slows convergence. In this later regime, convergence is slow when

the influences of the two populations are relatively balanced and accelerates when the authority

group becomes dominant.

Figure 3: Multiple grassroots groups and one elite group

Notes: Graph of |λ2(T
∗)| versus α, with ϕ(α, d) = dα, m = 4, 6, n1 = 400, (m− 1)n2 = 600, p = 0.5, q = 0.3.

When there is one elite group but multiple grassroots groups, increasing grassroots-dissent (e.g., as α approaches
−∞) can lead to slower convergence. When α is negative and large in magnitude, the initial beliefs that lead to the
slowest convergence are those in which grassroots groups hold different views from each other. Conversely, when
α is positive and large, the initial beliefs that result in the slowest convergence are those where grassroots groups
share the same views with each other, but these views differ from those of the elite group.

This refined model bridges the traditional social learning models with contemporary soci-

etal nuances. Existing literature on social learning demonstrates convergence under very mild

conditions (aperiodicity and strongly connectedness) [1, 13, 9]. Other studies, including this

paper, are interested in how fast beliefs converge. Unlike most investigations that uncover the

impacts of network structures[14, 10], our contributions stand as to emphasize the effects of a

learning heuristic—authority-respect and grassroots-dissent—on convergence speed.
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Results

To investigate the influence of authority-respect and grassroots-dissent, captured by degree-

weighted learning heuristics, on belief convergence rates, we structure our exposition through

a series of methodical steps. Initially, we integrate a degree-weighted learning heuristic into

the established DeGroot learning framework. Subsequently, we delineate the metric for conver-

gence speed within this augmented model. In the penultimate phase, we employ the stochastic

block model to introduce a variable degree of heterogeneity among the agents. Finally, we

demonstrate how varying degrees of deference to authority can significantly alter the rate at

which convergence is achieved.

Our framework is built upon the classical DeGroot learning model [1], where an agent’s

belief—such as the probability of global warming or the safety of a COVID vaccine—is formed

through a linear aggregation of the neighboring agents’ beliefs from the previous period, as

follows:

b(t) = Ttb0 ,

where b(t) is the belief vector of n vertices at time t = 0, 1, 2, . . ., b0 ∈ Rn with ∥b0∥2 = 1 is

the initial belief vector, and T, the learning matrix, is an n × n row-stochastic matrix. In this

matrix, each element Tij represents the weight that vertex i assigns to the belief of vertex j.

We generalize [10]’s setup which assumes equal-weighting of one’s neighbors: given an

undirected and unweighted network, captured by a n × n adjacency matrix A, the learning

matrix T is defined by the relation Tij = Aij/di(A), where di(A) =
∑

j Aij represents i’s

degree—that is, the number of connections or friends agent i possesses.

We introduce a new degree-weighted learning matrix T(A), as follows:

Tij(A) =
Aijϕ(α, dj(A))∑

k

Aikϕ(α, dk(A))
, (1)
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where ϕ : R2 → R is a function that modulates the influence of the degree of vertices, with

a canonical example being ϕ(α, d) = dα. The index, α ∈ R, captures the dependence of

the weight on one’s degree: a larger α corresponds to larger weights to neighbors with higher

degrees, or more authority-respect;1 and a smaller α corresponds to more grassroots-dissent.2

So that both dynamics are captured in the same framework.

To explore the degree-weighted learning heuristic, we adopt a stochastic block model,

A(P,n) ([15, 16, 17]), to generate the adjacency matrices. Besides its prevalence in network

analysis ([18, 19, 10, 20]), the model is a natural choice to produce networks where vertices

have heterogeneous degrees and to differentiate the elites and the grassroots.

Elite-Grassroots model. Particularly, we introduce a case referred to as the Elite-Grassroots

model, consisting of n agents distributed into m ≥ 2 groups, with each group comprising ni

agents for i ∈ {1, · · · ,m}. The linking probability matrix P is structured as follows:

P =


p q . . . q
q p . . . q
...

... . . . ...
q q . . . p

 , (2)

where p denotes the within-group linking probability, and q the between-group linking prob-

ability. The ratio of p to q serves as a measure of homophily ([10]). We make the following

simplifying assumption regarding group sizes:

n1 ̸= n2 = . . . = nm. (A1)

Let d∗k denote the expected degree of a vertex in group k ∈ {1, . . . ,m}, then d∗1 = n1p +

(m− 1)n2q and d∗k = n1q + n2p+ (m− 2)n2q, k = 2, . . . ,m.

1This corresponds to a common premise that vertices with higher degrees, such as celebrities, experts, or
opinion leaders, are deemed more influential.

2This reflects a trend where, aided by technological advancements, the opinions of the broader community have
become increasingly accessible and influential.
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We term the group with the larger expected degree the elite, and the group with the smaller

expected degree the grassroots. This simple structure captures the following three cases:

1. one grassroots group and one elite group (Figure 1), which captures the baseline patterns

for authority-respect and grassroots-dissent;

2. one grassroots group and multiple elite groups (Figure 2), which captures the case where

elites may represent different campaigns and/or hold conflicting views[12];

3. one elite group and multiple grassroots groups (Figure 3), which corresponds to the sce-

nario with multiple (cultural, ethnic, etc.) groups whose initial beliefs may be divergent.

Now we present the formal results. Our first result confirms, in our context, the inverse rela-

tionship between convergence speed and |λ2| documented in the literature (e.g. [21, 22]).

Lemma 1 (Convergence Speed Inversely Related to |λ2|). Given T∞ = limt→∞Tt,3 at time t,

the distance between the current belief and the limiting belief is

max
∥b0∥2=1

∥(Tt −T∞)b0∥2 = |λ2(T)|t , (3)

where λ2(T) is the second largest eigenvalue in magnitude of T and ∥ · ∥2 is the Euclidean

norm. Therefore, convergence speed decreases in |λ2|.

With the largest eigenvalue of a row-stochastic matrix being 1, the expression on the right

side of equation (3) diminishes to zero as t increases, and thus |λ2(T)| primarily determines the

convergence speed.4

3We assume convergence, i.e., limt→∞ Tt exists, which only requires mild conditions (aperiodicity and
strongly connectivity, see, e.g. [1] and [13]). Assumption 1 in Section ensures convergence with high proba-
bility.

4For an intuitive explanation of why the magnitude of the second largest eigenvalue correlates with convergence
speed, interested readers may consult [22].
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Results for “Expectation”–Replacing A with E[A]. With the foundational concepts estab-

lished, our task is to determine the second largest eigenvalue (in magnitude) of T. In a stochas-

tic block model, T is inherently a random variable. Here, we present our results concerning the

expectations of T. In Section , we complete the analysis by demonstrating that the difference

between a random network and its expected value becomes negligibly small for a sufficiently

large n.

Recall that A(P,n) denotes the random matrix generated by the stochastic block model.

Now, define R = E[A(P,n)], where R is the expected adjacency matrix, with Rij = Pkl when

vertex i is in group k and vertex j is in group l. Let T∗ denote the linear updating mechanism,

which we define using R as follows:

T ∗
ij =

Rij ϕ(α, dj(R))∑
j

Rij ϕ(α, dj(R))
, (4)

where we define the expected degree di(R) as follows: di(R) = E[di(A)] =
∑

j Rij for

i = 1, . . . , n. In the definition of T∗, note that we replace all instances of A with R in the

expression of T in (1).

We are now ready to fully characterize |λ2| and the impact of α on it.

Theorem 1 (Non-monotonic Impact of Degree-Dependence, α). Let Dα be the region such that

|λ2(T
∗)| is decreasing in α for α ∈ Dα and increasing for α /∈ Dα. Then Dα is characterized

as follows:

Dα =



[
g−1

(
n1

n2

)
,∞
)
, 5 if m = 2

(−∞, g−1(n1/n2)] ∪
[
g−1

(
n1

n2

(
p

(m−1)(p+(m−2)q)

)1/2)
,∞
)
, if m ≥ 3, d∗1 > d∗2(

g−1

(
n1

n2

(
p

(m−1)(p+(m−2)q)

)1/2)
, g−1(n1/n2)

]
, if m ≥ 3, d∗1 < d∗2

(5)

In other words, when there is only one elite group and one grassroots group (Case 1, Figure

1), an increase in α beyond g−1(n1

n2
) as well as a decrease in α below this threshold can both
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lead to faster belief convergence. In the scenario with one grassroots group and multiple elite

groups (Case 2, Figure 2), a lower α facilitates faster convergence, while a higher α results in

slower convergence. Conversely, with one elite group and multiple grassroots groups (Case 3,

Figure 3), a higher α accelerates belief convergence, whereas a lower α decelerates. In addition,

Figure 5 compares Cases 1 and 2 and Figure 4 Cases 2 and 3.

Recall that the above patterns are presented based on the expected matrix, R. In Section ,

we complete the analysis by demonstrating that the difference between a random network and

its expected value becomes negligibly small for a sufficiently large n.

Discussion

Understanding regime changes using the worst-case initial beliefs.

Our results reveal that simply amplifying either authority-respect or grassroots-dissent does

not necessarily lead to faster convergence. To understand why, it is crucial to examine the

regime changes in each scenario. This involves investigating the worst-case beliefs – the initial

beliefs that result in the slowest convergence – which highlight the primary tensions impeding

convergence in each case.

In the scenario with one elite and one grassroots group (Case 1, Figure 1), the worst-case

occurs when these groups hold divergent initial beliefs (e.g., 1’s for one group and 0’s for the

other). As α approaches −∞, agents predominantly consider grassroots opinions, leading to

grassroots dominance; conversely, as α approaches +∞ with greater trust in authorities, the

elite group becomes dominant. As α shifts from −∞ to g−1(n1

n2
), society transitions from a sin-

gle dominant viewpoint to dual viewpoints – one from the elite and one from the grassroots –

which slows down belief convergence as α increases in this range. Further increase in α eventu-

ally reverts the society back to a single dominant viewpoint, thereby accelerating convergence.

In the case of one grassroots group and multiple elite groups (Case 2, Figure 2a), different
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dynamics emerge. In regime I, where α is large enough for elites to be more influential, the

worst-case involves conflicting views within different elite groups. These intra-group conflicts

significantly slow down convergence, with the grassroots acting as mediators that harmonize

these conflicts, resulting in decreased convergence speed as α increases. In regime II, with a

smaller α, inter-group conflicts between the grassroots and elite groups drive slower conver-

gence. Here, convergence is slowest when both populations are similarly influential and speeds

up as the grassroots become more dominant.

Understanding the dynamics in Case 2 simplifies the comprehension of Case 3. When grass-

roots groups are more influential (when α is negative but large in maganitude), slow conver-

gence is observed when different grassroots groups (e.g., those from distinct cultural or ethnic

backgrounds) hold conflicting views. The emergence and increasing influence of an elite group

or ChatGPT (a positve and large α) enhance social learning effectiveness. This continues until

the influences of the grassroots and the elite roughly equalize, marking a phase transition where

the main tension becomes the one between these two populations. In this final regime, conver-

gence is slower when the influence of both populations is balanced and speeds up as the elite

group gains dominance.

Takeaway. Our study sheds light on the influence of skepticism towards experts and the discord

in public discourse. In society’s complex discourse, our views are shaped by various influences,

from authorities to grassroots movements and opinion leaders. The weight we give to each

voice can significantly affect the persistence of societal disagreements. The key takeaway is

that a pronounced respect for authority does not uniformly speed up consensus. The rate of

belief convergence, influenced by deference to authority or grassroots-dissent, depends on the

unity within the elite and grassroots factions.

Limitations and Future Work. Our study employs an agent’s network of connections, or “de-

gree,” as a surrogate for attributes like influence, fame, and popularity. This degree-dependent
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method in our updating matrix captures essential aspects of social learning. However, there

are potential alternative dimensions to consider. For instance, during information updates, the

weighting matrix might be based on the precision of an agent’s signal rather than their neigh-

bors’ degree. While this presents a compelling avenue of exploration, a thorough analysis of

such dimensions is reserved for future research.

Figure 4: One grassroots group + one vs. multiple elite groups

Notes: Graph of |λ2(T
∗)| vs. α, with ϕ(α, d) = dα, n1 = 800, (m − 1)n2 = 600, p = 0.3, q = 0.4 and

m = 2, 4, 6. This graph shows that when there is one grassroots group but multiple elite groups (m = 4, 6, green-
dotted or blue-dashed), unlike the case with one elite group (m = 2, red-solid), increasing authority-respect (e.g.,
when α → ∞) can lead to slower convergence.
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Figure 5: One vs. multiple grassroots groups + one elite group

Notes: Graph of |λ2(T
∗)| vs. α, with ϕ(α, d) = dα, n1 = 500, n2 = 300, p = 0.3, q = 0.2 and m = 2, 4, 6.

This graph shows that when there is one elite group but multiple grassroots groups (m = 4, 6, green-dotted or
blue-dashed), unlike the case with one grassroots group (m = 2, red-solid), increasing grassroots-dissent (e.g.,
when α → −∞) can cause slower convergence.

Materials and Methods

We showed our results using an example of the degree-dependent function ϕ(d) = dα. All

results hold for general ϕ as long as it satisfies the following properties:

Property 1. ϕ(α, d) ∈ C2(R × [0,∞)) is nonnegative and ϕ(0, d) ≡ 1 for all d ∈ [0,∞).

In addition, ϕ is monotonically increasing in α for α ∈ R, monotonically increasing in d for

α ∈ (0,∞) and monotonically decreasing in d for α ∈ (−∞, 0).

Property 2. For any two degrees d1 > d2, the ratio ϕ(α, d2)/ϕ(α, d1) is strictly decreasing in

α:
d

dα

(
ϕ(α, d2)

ϕ(α, d1)

)
< 0 . (6)

In addition, lim
α→∞

ϕ(α,d2)
ϕ(α,d1)

= lim
α→−∞

ϕ(α,d1)
ϕ(α,d2)

= 0.
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Property 3. ϕ satisfies

lim sup
d→∞

∂ϕ(α, d)/∂d

ϕ(α, d)/d
< ∞ , (7)

and

lim sup
d→∞

∂2ϕ(α, d)/∂d2

(∂ϕ(α, d)/∂d)/d
< ∞ . (8)

Properties 1 and 2 are the very basic requirements for ϕ in order for our discussion to be

meaningful. Property 3 consists of two technical conditions needed for the concentration result

that we derive later in Lemma 2 for random networks. Roughly speaking, Property 3 says that

we do not want a tiny change in the degree d to cause a huge increase in the ϕ.

Fully characterizing λ2

Theorem 1 relies on the following result which fully characterizes the second largest eigenvalue

in magnitude of learning matrix T∗.

Proposition 1 (λ2 in Elite-Grassroots Model). Recall that d∗1 = n1p + (m − 1)n2q and d∗2 =

n1q + n2p+ (m− 2)n2q be the expected degrees and let g : R → R be the function:

g(α) =
ϕ(α, d∗2)

ϕ(α, d∗1)
, (9)

where ϕ satisfy Properties 1 - 3. Then under assumptions of linking probabilities and group

sizes in (2) and (A1) we have:

When m = 2 (Case (1)), the second largest eigenvalue (in magnitude) is:

|λ2(T
∗)| =

∣∣∣∣ n1p ϕ(α, d
∗
1)

n1p ϕ(α, d∗1) + n2q ϕ(α, d∗2)
− n1q ϕ(α, d

∗
1)

n1q ϕ(α, d∗1) + n2pϕ(α, d∗2)

∣∣∣∣ (10)

When m ≥ 3 and d∗1 > d∗2 (Case (2)), we have:6

|λ2(T
∗)| =


| n1p ϕ(α,d∗1)

n1p ϕ(α,d∗1)+(m−1)n2q ϕ(α,d∗2)

− n1q ϕ(α,d∗1)

n1q ϕ(α,d∗1)+(n2p+(m−2)n2q)ϕ(α,d∗2)
| , α ≥ g−1(n1/n2)∣∣∣ n2(p−q)ϕ(α,d∗2)

n1q ϕ(α,d∗1)+(n2p+(m−2)n2q)ϕ(α,d∗2)

∣∣∣ , α < g−1(n1/n2)

(11)

6Note that the existence of the inverse g is guaranteed: property 2 of ϕ implies that ϕ(α,d∗
2)

ϕ(α,d∗
1)

is strictly monotone
and thus invertible.
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When m ≥ 3 and d∗1 < d∗2 (Case (3)), the second largest (in magnitude) eigenvalue is:

|λ2(T
∗)| =


| n1p ϕ(α,d∗1)

n1p ϕ(α,d∗1)+(m−1)n2q ϕ(α,d∗2)

− n1q ϕ(α,d∗1)

n1q ϕ(α,d∗1)+(n2p+(m−2)n2q)ϕ(α,d∗2)
| , α ≤ g−1(n1/n2)∣∣∣ n2(p−q)ϕ(α,d∗2)

n1q ϕ(α,d∗1)+(n2p+(m−2)n2q)ϕ(α,d∗2)

∣∣∣ , α > g−1(n1/n2)

(12)

Worst initial beliefs

It can be shown that the second eigenvector of T∗ takes the following form:

v2 = (v21, . . . , v21︸ ︷︷ ︸
n1

, v22, . . . , v22︸ ︷︷ ︸
n2

, . . . , v2m, . . . , v2m︸ ︷︷ ︸
n2

)⊤.

Note here that since agents within the same group are identical ex ante, their beliefs quickly

converge after one period of updating. As a result, in expectation, agents in the same group

hold identical views. Only beliefs across groups could differ.

Then we have for case 1, i.e., m = 2:

v21 = − b

en2 + n1b2/e
, v22 =

1

n2 + n1b2/e2
.

In other words, when we have only two groups of agents, for each α, the initial beliefs that

lead to slowest convergence is the one that elite group holds a different view than the grassroots

group.

For case 2, when m ≥ 3 and there is one elite group and multiple grassroots groups: if

α > g−1(n1

n2
), the worst initial beliefs are that elite group agents share the same initial beliefs,

and all the grassroots groups share the same beliefs. Whereas when α < g−1(n1

n2
), the worst

initial beliefs are that elite group agents share the same belief, but the grassroots groups hold

different opinions from each other (i.e., grassroots groups 2 to m holds different initial views).

Moving to case 3 in which there is one grassroots group and multiple elite groups, if α >

g−1(n1

n2
), the worst initial beliefs are such that different elite groups hold different views, and

grassroots agents hold the same view; and when α < g−1(n1

n2
), the worst initial beliefs are such
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different elite groups holds the same view, but the view is different from grassroots view. More

formally, the following proposition summarizes the above results about worst initial beliefs.

Proposition 2. Denote the second eigenvector of T∗ by

v2 = (v21, . . . , v21︸ ︷︷ ︸
n1

, v22, . . . , v22︸ ︷︷ ︸
n2

, . . . , v2m, . . . , v2m︸ ︷︷ ︸
n2

)⊤.

For d∗1 > d∗2, when α > g−1(n1

n2
), we have

v21 = − (m− 1)b

e(m− 1)n2 + n1(m− 1)2b2/e
, v22 = . . . = v2m =

1

(m− 1)n2 + n1(m− 1)2b2/e2
.

When α < g−1(n1

n2
), let v′ = (v′1, . . . , v

′
1︸ ︷︷ ︸

n1

, v′2, . . . , v
′
2︸ ︷︷ ︸

n2

, . . . , v′m, . . . , v
′
m︸ ︷︷ ︸

n2

)⊤, where

v′1 = − (m− 1)b

e(m− 1)n2 + n1(m− 1)2b2/e
, v′2 = . . . = v′m =

1

(m− 1)n2 + n1(m− 1)2b2/e2
.

then (D1,RD2,R)
−1/2v2 is any vector orthogonal to (D1,RD2,R)

1/2v′ and (D1,RD2,R)
1/21,

where D1,R and D2,R are diagonal matrices defined by:

(D1,R)ii =
∑
j

Rij ϕ(α, dj(R)) ,

(D2,R)ii = ϕ(α, di(R)) ,

in which T∗ = D−1
1,RRD2,R , and R = IEA.

When α = g−1(n1

n2
), (D1,RD2,R)

−1/2v2 is any vector orthogonal to (D1,RD2,R)
1/21.

In contrast if d∗1 < d∗2, when α < g−1(n1

n2
), we have

v21 = − (m− 1)b

e(m− 1)n2 + n1(m− 1)2b2/e
, v22 = . . . = v2m =

1

(m− 1)n2 + n1(m− 1)2b2/e2
.

When α > g−1(n1

n2
), then (D1,RD2,R)

−1/2v2 is any vector orthogonal to (D1,RD2,R)
1/2v′ and

(D1,RD2,R)
1/21.

When α = g−1(n1

n2
), (D1,RD2,R)

−1/2v2 is any vector orthogonal to (D1,RD2,R)
1/21.

For m = 2, the second eigenvector is

v21 = − b

en2 + n1b2/e
, v22 =

1

n2 + n1b2/e2
.
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Results for random learning matrix

Section summarizes our findings about convergence speed in the case of “expectation.” To

see the full picture, we need to show that the result for the random case is arbitrarily “close”

to the “expectation” when n is sufficiently large. To address this issue, we first make a few

assumptions:

Assumption 1 (Density). Let τn = min
i

di(R)
n

, τ̃n = max
i

di(R)
n

, where R = IEA. Assume that

lim
n→∞

τn√
τ̃n logn

n

= ∞ . (13)

Assumption 2 (No Vanishing Groups). For all k = 1, . . . ,m:

lim inf
n

nk

n
> 0 . (14)

Assumption 3 (Comparable Densities). 7

lim sup
n

pn
qn

< ∞ . (15)

We note first that with the minimum density assumed (Assumption 1), the network is con-

nected with high probability. Restricting to this high probability event, the directed graph G(T)

corresponding to the matrix T is strongly connected. In addition, T is aperiodic with high

probability. With the known fact that strongly connectivity and aperiodicity together implies

convergence (see [13]), we see that the limit exists with high probability. We characterize what

limit beliefs look like in the following proposition.

Proposition 3 (Consensus). The limit T∞ as t → ∞ is given by:

T∞ =


T1 T2 . . . Tn

T1 T2 . . . Tn
...

... . . . ...
T1 T2 . . . Tn

 ,

7Here, we consider increasing n, so p, q in (2) are with subscript n.
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where

Tj =

∑
i

Aij ϕ(α, dj(A))ϕ(α, di(A))∑
i,j

Aij ϕ(α, dj(A))ϕ(α, di(A))
,

for j = 1, . . . , n. This means that the limiting beliefs b(∞) = T∞b0 would shift towards the

beliefs of high degree neighbors as α increases.8

With Assumptions 1 - 3, we achieve our main technical Lemma:

Lemma 2. Suppose A(P,n) is generated by the stochastic block model with P and n. In

addition, suppose Assumptions 1, 2, and 3 hold. Then, there exists a positive constant9 C̃,

independent of n, such that for all n > 0,

P
{
|λ2(T)− λ2(T

∗)| ≥ C̃

√
τ̃n log n

τn
√
n

}
≤ 16

n2
.

Note for this lemma, we do not require the structure assumed in elite-grassroots model (i.e.,

we do not need Assumption A1). By Lemma 2, we see that the error gets arbitrarily small when

n goes to infinity. The remaining part is that although the monotonicity in the case “expectation”

does not happen in the case of random networks, we can still find out how much increase in α

could give a decrease in the eigenvalue that exceeds the error created by randomness. Given an

α0, suppose α rises from α0 to α1, then how large do α1 need to be to see an increase in the the

convergence speed with high probability? We answer this question by applying Lemma 2 in the

following theorem.

Theorem 2. Given a constant α0. Let α1 be bounded away from ∞. If α0, α1 ∈ Dα as defined

in Theorem 1 and

α1 − α0 > Ĉ

√
τ̃n log n

τn
√
n

[
∂ϕ/∂α(α1, d1)

ϕ(α1, d1)
− ∂ϕ/∂α(α1, d2)

ϕ(α1, d2)

]−1

, (16)

8Of course, if all degrees dj(A) are equal for all j = 1, . . . , n, then b(∞) is independent of α, but this happens
with negligible probability if A is generated randomly as in stochastic block model.

9The constant C̃ may depend on α and ϕ.
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where Ĉ > 0 is a constant10 independent of n , then there exists an integer n0 ∈ N, such that

for all n > n0,

P {|λ2(T(α0))| − |λ2(T(α1))| > 0} ≥ 1− 16

n2
.

Remark 1. The condition in (16) may seem complicated but it is not restrictive at all: the right

hand side of the inequality approaches zero as n goes to ∞. This condition is meant to describe

the minimum size of α1 − α0.

This theorem gives the size of increase from α0 to α1 such that the change in the magnitude

of the eigenvalue would be greater than the error, whose size is given by Lemma 2. Therefore,

Theorem 2 tells us that if α increases from α0 to α1 that satisfy the conditions in Theorem

2, then we will see a decrease in |λ2(T)| and thus an increase in convergence speed with a

probability tending to one as n goes to ∞.

Extension: Perturbation of Adjacency Matrix

We can further examine what happens if we allow for perturbation of the network structure. A

perturbation term is added to each entry of the adjacency matrix A and the impact of this on

Theorem 2 is investigated.11 More specifically, for i, j = 1, 2, . . . , n, let ϵij be independent and

identically distributed random variables supported on [0, 1]. Then, let the perturbed adjancency

matrix Ã be defined entrywise by:

Ãij = (1− δ)Aij + δϵij ,

for δ ∈ [0, 1]. Replacing A by Ã in (1), we define the perturbed weight matrix T̃ by:

T̃ij =
Ãijϕ(α, dj(Ã))∑
j

Ãijϕ(α, dj(Ã))
.

10Ĉ depends on lim supn pn/qn, lim supn n2/n1, lim supn ϕ(α1, d2)/ϕ(α1, d1) and the constant C̃ in Lemma
2.

11Ideally, we would add the perturbation to the matrix T but the structure of the row-stochastic matrix can easily
be broken in this way. Therefore, we pass the perturbation to the adjancency matrix A for theoretical simplicity.
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Similarly, let R̃ = IEÃ and define the deterministic matrix T̃∗ by:

T̃ ∗
ij =

R̃ijϕ(α, dj(R̃))∑
j

R̃ijϕ(α, dj(R̃))
.

Then, we have the following Corollary:

Proposition 4. Theorem 1 and Theorem 2 hold for the perturbed random matrix T̃.

It is clear that the extra perturbation term does not change the structure assumed in Theorem

1. The concentration result of Lemma 2 also holds since the perturbation ϵij is bounded so that

the concentration inequalities as our main tools for proving of Lemma 2 are unaffected. The

result of Theorem 2 follows.
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Supplementary materials

Omitted Proofs

We will use the following notations in our proofs. By (1), our updating matrix T is defined as:

T = D−1
1,AAD2,A , (17)

where D1,A and D2,A are diagonal matrices with diagonal entries:

(D1,A)ii =
∑
j

Aij ϕ(α, dj(A)) ,

(D2,A)ii = ϕ(α, di(A)) .

Recall that in section 2, we have restricted G(T) to be strongly connected, which is equivalent

to say T is irreducible. In addition, we study only the case in which limt T
t converges.

Throughout the proofs in the appendix, there are constants in equalities and inequalities.

The capital letter C will denote all such constants (possibly different) that are positive and are

independent of n.

Proof of Lemma 1

Preliminaries of Proof of Lemma 1

Lemma 1 is a generalization of the result in [10]. For the proof, we proceed by finding an upper

bound and a lower bound and show that they are indeed the same. The main part of the proof

is the same as that of [10] but some details are adjusted to work for our matrix T and the norm
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∥ · ∥2 . The key component of the proof is to apply the spectral theorem to get a decomposition

of the matrix T. We first show that such decomposition exists by the following Lemma:

Lemma 3. The matrix T in (17) is diagonalizable.

Proof. First, note that

(D1,AD2,A)
1/2T (D1,AD2,A)

−1/2 = D
−1/2
1,A D

1/2
2,ATD

1/2
2,AD

−1/2
1,A . (18)

The equality holds because the diagonal matrices D1,A and D2,A commute. Equation (18) says

T is similar to a symmetric matrix. Then, since any real symmetric matrix is diagonalizable, T

is also diagonalizable.

Lemma 3 allows us to apply spectral theorem for diagonalizable matrices [13] to T. Let the

spectral decomposition of T be:

T =
n∑

i=1

λiUi , (19)

where λi are the eigenvalues of T in decreasing order (in magnitude) and Ui are the orthogonal

projections onto the eigenspace of T associated with λi. The next lemma, commonly referred to

as the Perron-Fronbenius Theorem, gives an important property of the eigenvalues of the matrix

T that is applied in the proof of Lemma 1.

Lemma 4. For a nonnegative irreducible stochastic matrix T, its spectral radius ρ(T) = 1 is

a simple eigenvalue. In addition, the limit T∞ exists and takes the form:

T∞ = λ1U1 = vw⊤ ,

where v and w are left and right eigenvectors of T corresponding to λ1, normalized so that

w⊤v = 1.

The proof is given in [13].
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Proof of Lemma 1
Upper Bound

In this part, we want to achieve an upper bound of the distance ∥(Tt −T∞)b∥2 by applying

the spectral decomposition of the matrix T in (19). Note that

Tt −T∞ =
n∑

i=2

λt
iUi . (20)

The sum from 2 to n is justified by Lemma 4. The largest eigenvalue of T in magnitude

is 1 and all other eigenvalues have magnitude less than 1. Then, the i = 1 part in the sum

Tt =
∑n

i=1 λ
t
iUi cancels with T∞, since U1 = (vw⊤)t = v(w⊤v)t−1w⊤ = vw⊤ = T∞ for

t ∈ N. Applying (20), we have

∥∥(Tt −T∞)b∥∥2
2
=

∥∥∥∥∥
n∑

i=2

λt
iUib

∥∥∥∥∥
2

2

(21)

=
n∑

i=2

|λi|2t ∥Uib∥22 (UiUj = 0 for i ̸= j)

≤ |λ2|2t
n∑

i=2

∥Uib∥22

= |λ2|2t
∥∥∥∥∥

n∑
i=2

Uib

∥∥∥∥∥
2

2

. (UiUj = 0 for i ̸= j)

View U =
∑n

i=2Ui as a single orthogonal projection and it has the property that: U = U⊤ =

U2. Then, for any vector x,

∥Ux∥22 = ⟨Ux,Ux⟩ = ⟨U⊤Ux,x⟩ = ⟨Ux,x⟩ ≤ ∥Ux∥2∥x∥2 .

The last inequality is the Cauchy-Schwarz inequality. By (21),

∥∥(Tt −T∞)b∥∥2
2
≤ |λ2|2t∥b∥22 = |λ2|2t .

The upper bound is obtained by taking square root on both sides.
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Lower Bound

Here, we obtain a lower bound by considering a specific b. Let b be the eigenvector of

T corresponding to its second largest eigenvalue λ2 in magnitude, with ∥b∥22 = 1. Note

(Tt −T∞)b = λ t
2b. This is true because Uib = 0 for all i ̸= 2. Then,

∥∥(Tt −T∞)b∥∥2
2
=
∥∥λ t

2b
∥∥2
2

= |λ2|2t .

By taking square root on both sides, we see that the lower bound is the same as the upper bound.

■

Proof of Proposition 3

We first show a simple lemma that is used in the proof of Proposition 3.

Lemma 5. Consider similar n× n matrices M1 and M2 such that M2 = PM1P
−1, where P

is some invertible n × n matrix. If v is an eigenvector of M1 corresponding to eigenvalue λ,

then Pv is an eigenvector of M2 corresponding to the same eigenvalue λ.

Proof. Note that

M2(Pv) =
(
PM1P

−1
)
(Pv) = PM1v = λPv .

By the definition of eigenvectors, Pv is an eigenvector of M2 corresponding to the eigenvalue

λ.

Proof of Proposition 3

We want to find the limit:

T∞ = lim
t→∞

Tt = lim
t→∞

D
−1/2
1,A D

−1/2
2,A

(
D

1/2
2,AD

−1/2
1,A AD

1/2
2,AD

−1/2
1,A

)t
D

1/2
1,AD

1/2
2,A . (22)
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Given that the limit converges,

lim
t→∞

(
D

1/2
2,AD

−1/2
1,A AD

1/2
2,AD

−1/2
1,A

)t
= λ1v1v

⊤
1 , (23)

where λ1 = 1 is the largest eigenvalue in magnitude and v1 is the corresponding unit eigen-

vector of the matrix D
1/2
2,AD

−1/2
1,A AD

1/2
2,AD

−1/2
1,A . The limit being in this form is a result of the

Perron-Frobenius Theorem, which is the same as what we apply in equality (21) in the proof

of Lemma 1. Note that since the matrix in (23) is symmetric, the left and right eigenvectors

are the same. To find v1, apply Lemma 5: it’s easy to see that D−1
1,AAD2,A has eigenvector

e = (1, . . . , 1)⊤, corresponding to the eigenvalue 1. Then, D1/2
2,AD

−1/2
1,A AD

1/2
2,AD

−1/2
1,A has eigen-

vector w1 = D
1/2
2,AD

1/2
1,Ae. To make it into a unit vector, we divide it by its magnitude ∥w1∥2,

which has the expression:

∥w1∥2 =
∥∥∥D1/2

2,AD
1/2
1,Ae

∥∥∥
2
=

(∑
i,j

Aij ϕ(α, dj(A))ϕ(α, di(A))

)1/2

.

Since v1 = w1/∥w1∥2, (22) becomes:

T∞ =D
−1/2
1,A D

−1/2
2,A

(
∥w1∥−1

2 D
1/2
2,AD

1/2
1,Ae

)(
∥w1∥−1

2 D
1/2
2,AD

1/2
1,Ae

)⊤
D

1/2
1,AD

1/2
2,A

= ∥v1∥−2
2 EnD1,AD2,A ,

where En is an n× n matrix with all entries equal to 1. This leads us to the result of the limit:

T∞
ij =

∑
i Aij ϕ(α, dj(A))ϕ(α, di(A))∑
i,j Aij ϕ(α, dj(A))ϕ(α, di(A))

,

for each i, j = 1, . . . , n. ■

Proof of Proposition 1

In this section, our results are for the nonrandom matrix T∗ defined by:

T∗ = D−1
1,RRD2,R , (24)
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where R = IEA and D1,R, D2,R are diagonal matrices defined by:

(D1,R)ii =
∑
j

Rij ϕ(α, dj(R)) ,

(D2,R)ii = ϕ(α, di(R)) .

Before the proof of Proposition 1, we first show a Lemma:

Lemma 6. Let the m×m matrix FT∗ be defined as:

(FT∗)kl =
nlPkl ϕ(α,

∑
h nhPlh)∑

l nlPkl ϕ(α,
∑

h nhPlh)
. (25)

Then, FT∗ has the same eigenvalues as T∗.

Proof. First, note R is a matrix with m2 blocks. Within each block, the entries are identical. So

is T∗. From the definition of T∗, we see that if vertex i belongs to group k and vertex j belongs

to group l,

T ∗
ij =

Rij ϕ(α, dj(R))∑
j Rij ϕ(α, dj(R))

=
Pkl ϕ(α,

∑
h nhPlh)∑

l nlPkl ϕ(α,
∑

h nhPlh)
.

After suitable rearrangement of the vertices, this matrix T∗ is in the following block form:
B11 B12 . . . B1m

B21 B22 . . . B2m
...

... . . . ...
Bm1 Bm2 . . . Bmm

 ,

where each Bkl is a block matrix and within each block the entries are identical. Denote the en-

tries in block Bkl by Bkl, which takes the value of T ∗
ij in (25), if vertex i is in group k and vertex

j is in group l. Consider eigenvectors in the form of v = (v1, v1, . . . , v2, v2, . . . , vm, vm . . .)⊤.

T∗v = λv implies:

n1B11v1 + n2B12v2 + . . .+ nmB1mvm = λv1 ,

...
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n1Bm1v1 + n2Bm2v2 + . . .+ nmBmmvm = λvm ,

which completes the proof.

Proof of Proposition 1

Proof. In this proof, we focus on the case that d∗1 > d∗2, the proof of d∗1 < d∗2 is almost the

same and thus we omit it. By applying Lemma 6, we are able to reduce the n × n matrix T∗

to an m × m matrix FT∗ . By our assumptions of n and P in (A1) and (2), we see there are

two expected degrees, denoted as d∗1 and d∗2. For vertices in group 1 (the group with size n1),

d∗1 = n1p+(m−1)n2q and for vertices in the rest groups, d∗2 = n1q+n2p+(m−2)n2q. Then,

the matrix FT∗ is in the following form:

FT∗ =



a b b b . . . b
e c d d . . . d
e d c d . . . d
...

...
... . . . ...

...
e d d . . . c d
e d d . . . d c


, (26)

where

a =
n1p ϕ(α, d

∗
1)

n1p ϕ(α, d∗1) + (m− 1)n2q ϕ(α, d∗2)
,

b =
n2q ϕ(α, d

∗
2)

n1p ϕ(α, d∗1) + (m− 1)n2q ϕ(α, d∗2)
,

c =
n2p ϕ(α, d

∗
2)

n1q ϕ(α, d∗1) + n2p ϕ(α, d∗2) + (m− 2)n2q ϕ(α, d∗2)
,

d =
n2q ϕ(α, d

∗
2)

n1q ϕ(α, d∗1) + n2p ϕ(α, d∗2) + (m− 2)n2q ϕ(α, d∗2)
,

e =
n1q ϕ(α, d

∗
1)

n1q ϕ(α, d∗1) + n2p ϕ(α, d∗2) + (m− 2)n2q ϕ(α, d∗2)
.

We perform row operations on the matrix FT∗ − λIm before finding the zeros of the character-

istic polynomial:

det(FT∗ − λIm) = 0 . (27)
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Subtract last row from rows 2, 3, . . . ,m− 1 and equation (27) becomes:

det



a− λ b b b . . . b
0 c− d− λ 0 0 . . . −(c− d− λ)
0 0 c− d− λ 0 . . . −(c− d− λ)
...

...
... . . . ...

...
0 0 0 . . . c− d− λ −(c− d− λ)
e d d . . . d c− λ


= 0 .

We see now one eigenvalue is λ = c− d, with algebraic multiplicity m− 2.

Suppose λ ̸= c− d. Multiply rows 2, 3, . . . ,m− 1 by 1/(c− d− λ), we have:

det



a− λ b b b . . . b
0 1 0 0 . . . −1
0 0 1 0 . . . −1
...

...
... . . . ...

...
0 0 0 . . . 1 −1
e d d . . . d c− λ


= 0 .

Then, subtract multiplies of rows 2, 3, . . . ,m− 1 from the first and last row, we have:

det



a− λ 0 0 0 . . . (m− 1)b
0 1 0 0 . . . −1
0 0 1 0 . . . −1
...

...
... . . . ...

...
0 0 0 . . . 1 −1
e 0 0 . . . 0 c− λ+ (m− 2)d


= 0 . (28)

Computing the determinant (28), we see the eigenvalues different from c− d should satisfy the

equation:

(a− λ)(c− λ+ (m− 2)d)− e(m− 1)b = 0 .

Note whether m is even or odd does not change the equation. By solving the quadratic equation,

we see that the other two eigenvalues are λ = 1 and λ = a − e. To get the second largest

eigenvalue, we compare a − e and c − d, both being positive. So, in the computation below,

|λ2| = λ2 and the absolute value is omitted. We then compare the two candidates a − e and
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c− d. Denoting the denominators of a and c as D1 and D2 respectively, we have

D1D2(a− e− c+ d)

=n1p ϕ(α, d
∗
1)[n1q ϕ(α, d

∗
1) + n2p ϕ(α, d

∗
2) + (m− 2)n2q ϕ(α, d

∗
2)]

− (n2(p− q)ϕ(α, d∗2) + n1q ϕ(α, d
∗
1))[n1p ϕ(α, d

∗
1) + (m− 1)n2q ϕ(α, d

∗
2)]

= (m− 1)n2q ϕ(α, d
∗
2)(p− q)(n1 ϕ(α, d

∗
1)− n2 ϕ(α, d

∗
2)) . (29)

This proves (11) in Proposition 1, since n1ϕ(α, d
∗
1) ≥ n2 ϕ(α, d

∗
2) is equivalent to α ≥ g−1(n1/n2).

We are left with the special case of m = 2. We see that if m = 2, there is no eigenvalue being

c− d. This completes the computations in Proposition 1.

Proof of Theorem 1

In this proof we focus on the case that d∗1 > d∗2, the proof of d∗1 < d∗2 is almost the same and

thus we omit it. For m ≥ 3, to show the monotonicity we first consider α ≥ g−1(n1/n2), for

which the second largest eigenvalue is:

λ2 = a− e

=
n1p ϕ(α, d

∗
1)

n1p ϕ(α, d∗1) + (m− 1)n2q ϕ(α, d∗2)
− n1q ϕ(α, d

∗
1)

n1q ϕ(α, d∗1) + (n2p+ (m− 2)n2q)ϕ(α, d∗2)
,

(30)

From this expression, we see that the limit is 0 as α goes to ∞. We rewrite the above expression

of λ2 as:

λ2 =
1

1 + C1g(α)
− 1

1 + C2g(α)
, (31)

where C1 = (m−1)n2q
n1p

, C2 = n2p+(m−2)n2q
n1q

and g(α, d∗1, d
∗
2) =

ϕ(α,d∗2)

ϕ(α,d∗1)
. Since d∗1 and d∗2 are fixed

here, we omit them in the notation below and write g(α).
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Note that 0 < C1 < C2. Then, the derivative with respect to α is:

∂λ2

∂α
= − C1dg/dα

(1 + C1g(α))2
+

C2dg/dα

(1 + C2g(α))2

=
dg

dα

[
(C2 − C1)(1− C1C2g

2(α))

(1 + C1g(α))2(1 + C2g(α))2

]
. (32)

Property 2 in (6) implies that dg
dα

< 0. Thus, the ∂λ2

∂α
≤ 0 for 1 − C1C2g

2(α) ≥ 0, which is

equivalent to:

α ≥ g−1

(
1√
C1C2

)
= g−1

(
n1

n2

(
p

(m− 1)(p+ (m− 2)q)

)1/2
)

. (33)

Similarly, for α < g−1(n1/n2),

λ2 = c− d =
n2(p− q)g(α)

n1q + n2(p+ (m− 2)q)g(α)
. (34)

Then, taking the derivative and simplify, we get

∂λ2

∂α
=

∂g

∂α

n1n2(p− q)q

(n1q + n2(p+ (m− 2)q)g(α))2
< 0 , (35)

since ∂g
∂α

< 0. For m = 2, noticing that λ2 = a− e and hence the proof is similar to (30)–(33).

■

Proposition 5. Denote the second eigenvector of T∗ by

v2 = (v21, . . . , v21︸ ︷︷ ︸
n1

, v22, . . . , v22︸ ︷︷ ︸
n2

, . . . , v2m, . . . , v2m︸ ︷︷ ︸
n2

)⊤.

For d∗1 > d∗2, when α > g−1(n1

n2
), we have

v21 = − (m− 1)b

e(m− 1)n2 + n1(m− 1)2b2/e
, v22 = . . . = v2m =

1

(m− 1)n2 + n1(m− 1)2b2/e2
.

When α < g−1(n1

n2
), let v′ = (v′1, . . . , v

′
1︸ ︷︷ ︸

n1

, v′2, . . . , v
′
2︸ ︷︷ ︸

n2

, . . . , v′m, . . . , v
′
m︸ ︷︷ ︸

n2

)⊤, where

v′1 = − (m− 1)b

e(m− 1)n2 + n1(m− 1)2b2/e
, v′2 = . . . = v′m =

1

(m− 1)n2 + n1(m− 1)2b2/e2
.
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then (D1,RD2,R)
−1/2v2 is any vector orthogonal to (D1,RD2,R)

1/2v′ and (D1,RD2,R)
1/21,

where D1,R and D2,R are defined below (24).

When α = g−1(n1

n2
), (D1,RD2,R)

−1/2v2 is any vector orthogonal to (D1,RD2,R)
1/21.

In contrast if d∗1 < d∗2, when α < g−1(n1

n2
), we have

v21 = − (m− 1)b

e(m− 1)n2 + n1(m− 1)2b2/e
, v22 = . . . = v2m =

1

(m− 1)n2 + n1(m− 1)2b2/e2
.

When α > g−1(n1

n2
), then (D1,RD2,R)

−1/2v2 is any vector orthogonal to (D1,RD2,R)
1/2v′ and

(D1,RD2,R)
1/21.

When α = g−1(n1

n2
), (D1,RD2,R)

−1/2v2 is any vector orthogonal to (D1,RD2,R)
1/21.

For m = 2, the second eigenvector is

v21 = − b

en2 + n1b2/e
, v22 =

1

n2 + n1b2/e2
.

Proof. Similar to the previous proof, we focus on the case that d∗1 > d∗2. By Proposition 1,

we conclude that the second eigenvalue is a − e or c − d depending on α. Denote the second

eigenvector by v2 = (v21, . . . , v21︸ ︷︷ ︸
n1

, v22, . . . , v22︸ ︷︷ ︸
n2

, . . . , v2m, . . . , v2m︸ ︷︷ ︸
n2

)⊤. When α > g−1(n1

n2
), the

second eigenvalue is a− e, combining (26) with Lemma 6, we have the following equations for

v2

av21 + bv22 + . . .+ bv2m = (a− e)v21 , (36)

...

ev21 + cv2i + d
∑

j ̸=i,j>1

v2j = (a− e)v2i , (37)

...

ev21 + dv22 + . . .+ cv2m = (a− e)v2m . (38)

By (36) we have

−ev21 = b

m∑
j=2

v2j . (39)
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Substituting this into (37), we have

(a+ b− e− c)v2i + (b− d)
∑

j ̸=i,j>1

v2j = 0, i = 2, . . . ,m. (40)

Therefore, the vector (v22, . . . , v2m)
⊤ is the eigenvector of the matrix diag((a + d − e −

c), . . . , (a + d − e − c)) + (b − d)11⊤ corresponding to the zero eigenvalue. Noticing that

a+ d− e− c = −(m− 1)(b− d), we have

v22 = . . . = v2m .

Combining this with (39), we have

v21 = − (m− 1)b

e(m− 1)n2 + n1(m− 1)2b2/e
, v22 = . . . = v2m =

1

(m− 1)n2 + n1(m− 1)2b2/e2
.

Similarly, when α < g−1(n1

n2
), recalling the definitions of D1,R and D2,R below (24) and notice

that they are diagonal matrices. We imply that (D1,RD2,R)
−1/2v2 is any vector orthogonal to

(D1,RD2,R)
1/2v′ and (D1,RD2,R)

1/21.

When α = g−1(n1

n2
), (D1,RD2,R)

−1/2v2 is any vector orthogonal to (D1,RD2,R)
1/21.

For m = 2, there is no eigenvalue being c− d and thus the second eigenvector is

v21 = − b

en2 + n1b2/e
, v22 =

1

n2 + n1b2/e2
.

Proof of Lemma 2

Preliminaries of Proof of Lemma 2

Recall that R = IEA. It is easy to see from the definition of matrices in (17) and (24) that

to compare the eigenvalues λ2(T) and λ2(T
∗), it is equivalent to compare the eigenvalues of
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D
1/2
2,AD

−1/2
1,A AD

1/2
2,AD

−1/2
1,A and D

1/2
2,RD

−1/2
1,R RD

1/2
2,RD

−1/2
1,R because they are similar to T and T∗

correspondingly. For simplicity, denote

DA = D−1
2,AD1,A ,

and

DR = D−1
2,RD1,R .

Then, by Weyl’s inequality,

|λ2(T)− λ2(T
∗)| ≤

∥∥∥D−1/2
A AD

−1/2
A −D

−1/2
R RD

−1/2
R

∥∥∥ , (41)

where ∥ · ∥ is the spectral norm. Therefore, it is sufficient to bound the spectral norm on the

right and this is done in the proof of Lemma 2.

Due to the assumptions (14) and (15) made in Lemma 2, the expected degrees satisfy:

1 < lim inf
n

mini di(R)

maxi di(R)(R)
≤ lim sup

n

maxi di(R)(R)

mini di(R)
< ∞ .

which implies that there exists a positive constant C such that for all n,

min
i

di(R) < max
i

di(R)(R) < Cmin
i

di(R) . (42)

In addition,

min
i
(DR)ii = min

i

∑
j Rij ϕ(α, dj(R))

ϕ(α, di(R))
= min

i

∑
j

Rij
ϕ(α, dj(R))

ϕ(α, di(R))
≥ min

i
di(R) . (43)

Before the proof of Lemma 2, we first list 2 propositions that are used in Lemma 2. The proofs

of these 2 propositions are left at the end of the section.

Proposition 6.

∥A−R∥ ≤ 3
√

max
i

di(R) log n ,

with probability at least 1− 2
n2 .
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Proposition 7. With the assumptions (13)-(15) of Lemma 2,∥∥∥D−1/2
A −D

−1/2
R

∥∥∥ ≤ C
√

max
i

di(R) log n
(
min

i
di(R)

)−3/2

,

with probability at least 1− 14
n2 .

Proof of Lemma 2

Proof. First, note that the spectral norm in (41) can be split as:∥∥∥D−1/2
A AD

−1/2
A −D

−1/2
R RD

−1/2
R

∥∥∥
≤
∥∥∥D−1/2

A AD
−1/2
A −D

−1/2
R AD

−1/2
A

∥∥∥+ ∥∥∥D−1/2
R AD

−1/2
A −D

−1/2
R AD

−1/2
R

∥∥∥
+
∥∥∥D−1/2

R AD
−1/2
R −D

−1/2
R RD

−1/2
R

∥∥∥
≤
∥∥∥D−1/2

A −D
−1/2
R

∥∥∥ · ∥A∥ ·
∥∥∥D−1/2

A

∥∥∥+ ∥∥∥D−1/2
A −D

−1/2
R

∥∥∥ · ∥A∥ ·
∥∥∥D−1/2

R

∥∥∥
+ ∥A−R∥ ·

∥∥D−1
R

∥∥ .

By triangular inequality,

∥A∥ ≤ ∥A−R∥+ ∥R∥ .

The spectral norm is bounded above by the Frobenius norm:

∥R∥ ≤ ∥R∥F =

√∑
i,j

R2
ij ≤ Cnmax

i,j
Pij ≤ Cmin

j
dj(R) ,

for all n > 0, where maxi,j Pij is the largest entry of the matrix P in the stochastic block model.

Then applying Proposition 6 together with assumption 1 in (13), we get

∥A∥ ≤ Cmin
j

dj(R) ,

with probability at least 1− 2
n2 . Similarly, by Proposition 7,

∥∥∥D−1/2
A

∥∥∥ ≤ C

(
min
j

dj(R)

)−1/2

,
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with probability at least 1− 14
n2 , for n large enough. Conditioning on the event{

∥A−R∥ ≤ 3
√

max
i

di(R) log n

}⋂{∥∥∥D−1/2
A −D

−1/2
R

∥∥∥ ≤ C
√
n log n

(
min

i
di(R)

)−3/2
}

,

which takes place with probability at least 1− 16
n2 , we get∥∥∥D−1/2

A AD
−1/2
A −D

−1/2
R RD

−1/2
R

∥∥∥ ≤ C

√
maxi di(R) log n

mini di(R)
= C

√
τ̃n log n

τn
√
n

, (44)

which finishes the proof.

Proof of Theorem 2

Recall that in Proposition 1 and Theorem 1, we computed |λ2(T
∗(α))| and ∂|λ2(T∗(α))|

∂α
. Since

|λ2(T
∗(α))| is positive and monotonically decreasing on Dα, for α1 > α0,

|λ2(T
∗(α0))| − |λ2(T

∗(α1))| = λ2(T
∗(α0))− λ2(T

∗(α1)) . (45)

By mean value theorem,

λ2(T
∗(α0))− λ2(T

∗(α1)) ≥ (α0 − α1)
∂λ2(T

∗(α))

∂α

∣∣∣∣
α=α1

. (46)

We want to find the size of the derivative. Let

C1 =
(m− 1)n2q

n1p
,

C2 =
n2p+ (m− 2)n2q

n1q
.

Then, for α ≥ g−1(n1/n2), using the expression (32) in the proof of Theorem 1, we have

∂λ2(T
∗(α))

∂α

∣∣∣∣
α=α1

= −C3

(
n2

n1

,
q

p
,
ϕ(α1, d2)

ϕ(α1, d1)

)[
∂ϕ/∂α(α1, d1)

ϕ(α1, d1)
− ∂ϕ/∂α(α1, d2)

ϕ(α1, d2)

]
, (47)

where C3 is some positive constant which depends on the fractions n2

n1
, q
p

and ϕ(α1,d2)
ϕ(α1,d1)

and it does

not depend on n when n is large. By assumption,

α1 − α0 > Ĉ

(
n2

n1

,
q

p
,
ϕ(α1, d2)

ϕ(α1, d1)
, C̃

) √
τ̃n log n

τn
√
n

[
∂ϕ/∂α(α1, d1)

ϕ(α1, d1)
− ∂ϕ/∂α(α1, d2)

ϕ(α1, d2)

]−1

,
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where C̃ is the constant in Lemma 2. Combining with (45) – (47), we have

|λ2(T
∗(α0))| − |λ2(T

∗(α1))| > ĈC3

√
τ̃n log n

τn
√
n

, (48)

for α ≥ g−1(n1/n2).

On the other hand, for α < g−1(n1/n2), using expression (35) in the proof of Theorem 1, we

have equation (47), for a positive constant C4 possibly different from C3. Similar to (48), we

then get

|λ2(T
∗(α0))| − |λ2(T

∗(α1))| > ĈC4

√
τ̃n log n

τn
√
n

, (49)

for α < g−1(n1/n2).

We then notice that

|λ2(T(α0))| − |λ2(T(α1))| = |λ2(T
∗(α0))| − |λ2(T

∗(α1))|+ (|λ2(T(α0))| − |λ2(T
∗(α0))|)

+ (|λ2(T
∗(α1))| − |λ2(T(α1))|)

> |λ2(T
∗(α0))| − |λ2(T

∗(α1))|+ C5

√
τ̃n log n

τn
√
n

,

with probability at least 1− 16
n2 for some constant C5, by Lemma 2. Letting Ĉ = (1−C5)

min(C3,C4)
, we

see that the result of Theorem 2 follows. ■

Proof of Proposition 6

To bound ∥A−R∥, rewrite it as:

A−R = Y +
∑

1≤i<j≤n

Xi,j ,

where Xi,j = (A − R)(eie
⊤
j + eje

⊤
i ), Y = diag(A11 − R11, . . . , Ann − Rnn) and ei is the

standard basis of Rn. Note Xi,j are independent with mean zero and they are independent of Y,

which also has mean zero. Then, the matrix Bernstein inequality, [23] Theorem 5.4.1 implies:

P

{∥∥∥∥∥Y +
∑

1≤i<j≤n

Xi,j

∥∥∥∥∥ ≥ t

}
≤ 2n exp

(
− t2/2

σ2 +Kt/3

)
, (50)
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where

∥Y∥,
∥∥Xi,j

∥∥ ≤ K = 1

and

σ2 =

∥∥∥∥∥IEY2 +
∑

1≤i<j≤n

IE(Xi,j)2

∥∥∥∥∥
Note (Xi,j)2 = (Aij −Rij)

2(eie
⊤
i + eje

⊤
j ) so that

IE(Xi,j)2 = (Rij −R2
ij)(eie

⊤
i + eje

⊤
j ) .

And

IEY2 =
n∑

i=1

(Rii −R2
ii)eie

⊤
i .

Since each Aij is a Bernoulli random variable, Rij ∈ [0, 1]. Therefore,
∑n

j=1(Rij − R2
ij) ≤

maxi di(R), we see σ2 ≤ maxi di(R). Let t = 3
√

maxi di(R) log n. By (50) we get:

P

{∥∥∥∥∥ ∑
1≤i<j≤n

Y +Xi,j

∥∥∥∥∥ ≥ 3
√
max

i
di(R) log n

}
≤ 2n exp

−
9maxi di(R) logn

2

maxi di(R) +
3
√

maxi di(R) logn

3


≤ 2n exp(−3 log n)

=
2

n2
.

■

Proof of Proposition 7

The proof of Proposition 7 can be broken into proofs of several lemmas. We present the state-

ment and proofs of these lemmas below.

Lemma 7. Let K > 1 be a constant independent of n. Then, for α ≥ 0,

ϕ(α,min
i

di(R)) ≤ ϕ(α,Kmin
i

di(R)) ≤ C1ϕ(α,min
i

di(R)) , (51)
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and

C2
∂ϕ

∂d
(α,min

i
di(R)) ≤ ∂ϕ

∂d
(α,Kmin

i
di(R)) ≤ C3

∂ϕ

∂d
(α,min

i
di(R)) , (52)

where C1, C2, C3 are some positive constants independent of n. On the other hand, for α < 0,

C1ϕ(α,min
i

di(R)) ≤ ϕ(α,Kmin
i

di(R)) ≤ ϕ(α,min
i

di(R)) , (53)

and

C3
∂ϕ

∂d
(α,min

i
di(R)) ≤ ∂ϕ

∂d
(α,Kmin

i
di(R)) ≤ C2

∂ϕ

∂d
(α,min

i
di(R)) , (54)

Proof. We first prove (51). ϕ(α,mini di(R)) ≤ ϕ(α,Kmini di(R)) is by the monotonicity in

property 1 of ϕ for α ≥ 0. For the other side,

log
ϕ(α,Kmini di(R))

ϕ(α,mini di(R))
= log ϕ(α,Kmin

i
di(R))− log ϕ(α,min

i
di(R))

= (K − 1)min
i

di(R)
∂

∂d
log ϕ(α, d0) ,

for some d0 ∈ [mini di(R), Kmini di(R)]. Then, by property 3 in (7),

(K − 1)min
i

di(R)
∂

∂d
log ϕ(α, d0) = (K − 1)min

i
di(R)

∂ϕ/∂d(α, d0)

ϕ(α, d0)

≤ (K − 1)Kd0
∂ϕ/∂d(α, d0)

ϕ(α, d0)
≤ C .

Then,
ϕ(α,Kmini di(R))

ϕ(α,mini di(R))
= exp

(
log

ϕ(α,Kmini di(R))

ϕ(α,mini di(R))

)
≤ eC .

The proof of (52) is the same using property 3 in (8). Then, (53) and (54) are implied by (51)

and (52), respectively, by reversing all the inequalities, since ∂ϕ/∂d ≤ 0 for α < 0.

Lemma 8. For a fixed j,

|dj(A)− dj(R)| ≤
√

8max
i

di(R) log n , (55)
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with probability at least 1− 2
n4 . In addition,

|ϕ(α, dj(A))− ϕ(α, dj(R))| ≤
√
8max

i
di(R) log n

∣∣∣∣∂ϕ∂d (α, cj,1)
∣∣∣∣ , (56)

for some cj,1 ∈
[
dj(R)−

√
8maxi di(R) log n, dj(R) +

√
8maxi di(R) log n

]
for each j =

1, . . . , n, with probability at least 1− 2
n4 .

Proof. Recall dj(A) =
∑j

i=1Aij and dj(R) =
∑j

i=1Rij . Then, by Berstein inequality,

P{|dj(A)− dj(R)| ≥ t} = P

{∣∣∣∣∣
n∑

i=1

(Aij −Rij)

∣∣∣∣∣ ≥ t

}

≤ P

{
n∑

i=1

(Aij −Rij) ≥ t

}
+ P

{
n∑

i=1

(Rij − Aij) ≥ t

}

≤ 2 exp

(
− t2

2(maxi di(R) + t/3)

)
.

Let t =
√

8maxi di(R) log n, we get:

P{|dj(A)− dj(R)| ≥
√

8max
i

di(R) log n} ≤ 2e−4 logn =
2

n4
, (57)

which is (55). For (56), notice that by mean value theorem,

|ϕ(α, dj(A))− ϕ(α, dj(R))| = |dj(A)− dj(R)|
∣∣∣∣∂ϕ∂d (α, cj)

∣∣∣∣ ,
where cj ∈ [dj(R)− |dj(A)− dj(R)|, dj(R)+ |dj(A)− dj(R)| ]. Then by the previous bound

(57), we have

|ϕ(α, dj(A))− ϕ(α, dj(R))| ≤
√
8max

i
di(R) log n

∣∣∣∣∂ϕ∂d (α, cj,1)
∣∣∣∣ ,

for cj,1 ∈
[
dj(R)−

√
8maxi di(R) log n, dj(R) +

√
8maxi di(R) log n

]
for each j = 1, . . . , n,

with probability at least 1− 2
n4 .

Lemma 9. With the assumptions (13)-(15) of Lemma 2,

∥DA −DR∥ ≤ C
√
max

i
di(R) log n ,

with probability at least 1− 14
n2 and C is some fixed positive constant independent of n.
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Proof. Note both DA and DR are diagonal matrices. We first achieve an entrywise bound. For

any i = 1, . . . , n, we have∣∣∣∣
∑

j Aij ϕ(α, dj(A))

ϕ(α, di(A))
−
∑

j Rij ϕ(α, dj(R))

ϕ(α, di(R))

∣∣∣∣
≤
∣∣∣∣
∑

j Aij ϕ(α, dj(A))

ϕ(α, di(A))
−
∑

j Rij ϕ(α, dj(R))

ϕ(α, di(A))

∣∣∣∣+ ∣∣∣∣
∑

j Rij ϕ(α, dj(R))

ϕ(α, di(A))
−
∑

j Rij ϕ(α, dj(R))

ϕ(α, di(R))

∣∣∣∣
= 1 + 2 . (58)

Define dj,−i(A) = dj(A)− Aij . Note dj,−i(A) is independent of Aij . Then, the numerator

of the first term 1 in (58) can be split as:∣∣∣∣∣∑
j

Aij ϕ(α, dj(A))−
∑
j

Rij ϕ(α, dj(A))

∣∣∣∣∣
≤

∣∣∣∣∣∑
j

Aij (ϕ(α, dj(A))− ϕ(α, dj,−i(A)))

∣∣∣∣∣+
∣∣∣∣∣∑

j

(Aij −Rij)ϕ(α, dj,−i(A))

∣∣∣∣∣
+

∣∣∣∣∣∑
j

Rij [ϕ(α, dj,−i(A))− ϕ(α, dj,−i(R))]

∣∣∣∣∣+
∣∣∣∣∣∑

j

Rij [ϕ(α, dj(R))− ϕ(α, dj,−i(R))]

∣∣∣∣∣
=G+H+ J+K. (59)

Bound for G in (59):

By mean value theorem and Lemma 8,

|{ϕ(α, dj(A))− ϕ(α, dj,−i(A))} − {ϕ(α, dj(R))− ϕ(α, dj,−i(R))}|

≤ |{ϕ(α, dj(A))− ϕ(α, dj(R))} − {ϕ(α, dj,−i(A))− ϕ(α, dj,−i(R))}|

≤ 2max (|ϕ(α, dj(A))− ϕ(α, dj(R))| , |ϕ(α, dj,−i(A))− ϕ(α, dj,−i(R))|)

≤ 2
√
8max

i
di(R) log n

∣∣∣∣∂ϕ∂d (α, cj,2)
∣∣∣∣ ,

for some cj,2 ∈
[
dj(R)−

√
8maxi di(R) log n− 1, dj(R) +

√
8maxi di(R) log n

]
for each
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j = 1, . . . , n, with probability at least 1− 2
n4 . Then, by triangular inequality,

|ϕ(α, dj(A))− ϕ(α, dj,−i(A))| ≤ |ϕ(α, dj(R))− ϕ(α, dj,−i(R))|+ 2
√

8max
i

di(R) log n

∣∣∣∣∂ϕ∂d (α, cj,2)
∣∣∣∣

≤
∣∣∣∣∂ϕ∂d (α, cj,3)

∣∣∣∣+ 2
√
8max

i
di(R) log n

∣∣∣∣∂ϕ∂d (α, cj,2)
∣∣∣∣ ,

for some cj,3 ∈ [dj,−i(R), dj(R)] for each j = 1, . . . , n, with probability at least 1 − 2
n4 . Note

the bound obtained is not optimal but is more than enough for the proof of the Lemma. Consider

the event:

Λ =
⋂
j

{
|ϕ(α, dj(A))− ϕ(α, dj,−i(A))| ≤

∣∣∣∣∂ϕ∂d (α, cj,3)
∣∣∣∣+ 2

√
8max

i
di(R) log n

∣∣∣∣∂ϕ∂d (α, cj,2)
∣∣∣∣} .

We see that by union bound12, P{Λ} ≥ 1 − 2
n3 . Denote PS{T} = P{S ∩ T} for events S and

T .

Let t = 2

(
log n

∑
j

(∣∣∂ϕ
∂d
(α, cj,3)

∣∣+ 2
√
8maxi di(R) log n

∣∣∂ϕ
∂d
(α, cj,2)

∣∣)2)1/2

. Then, by Ho-

effding’s inequality, we have

P

{∣∣∣∣∣∑
j

(Aij −Rij) (ϕ(α, dj(A))− ϕ(α, dj,−i(A)))

∣∣∣∣∣ ≥ t

}

≤ PΛ

{∣∣∣∣∣∑
j

(Aij −Rij) (ϕ(α, dj(A))− ϕ(α, dj,−i(A)))

∣∣∣∣∣ ≥ t

}
+ P{ΛC}

≤ 2 exp

−
4 log n

∑
j

(∣∣∂ϕ
∂d
(α, cj,3)

∣∣+ 2
√
8maxi di(R) log n

∣∣∂ϕ
∂d
(α, cj,2)

∣∣)2∑
j

(∣∣∂ϕ
∂d
(α, cj,3)

∣∣+ 2
√
8maxi di(R) log n

∣∣∂ϕ
∂d
(α, cj,2)

∣∣)2
+

2

n3

≤ 2 exp(−4 log n) +
2

n3

≤ 4

n3
. (60)

Bound for H in (59):
12Consider events E1, . . . , En and P(Ej) ≥ 1− cj for all j = 1, . . . , n.

Then, P(∩jEj) = P((∪jE
C
j )C) = 1− P(∪jE

C
j ) ≥ 1−

∑
j P(EC

j ) ≥ 1−
∑

j cj .
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By mean value theorem and Lemma 8,

|ϕ(α, dj,−i(A))− ϕ(α, dj,−i(R))| ≤
√
8max

i
di(R) log(n− 1)

∣∣∣∣∂ϕ∂d (α, cj,4)
∣∣∣∣

≤
√
8max

i
di(R) log n

∣∣∣∣∂ϕ∂d (α, cj,4)
∣∣∣∣ ,

for some cj,4 ∈
[
dj(R)−

√
8maxi di(R) log n− 1, dj(R) +

√
8maxi di(R) log n

]
for each

j = 1, . . . , n, with probability at least 1− 2
n4 . Consider the event:

Γ =
⋂
j

{
ϕ(α, dj,−i(A)) ≤ ϕ(α, dj(R)) +

√
8max

i
di(R) log n

∣∣∣∣∂ϕ∂d (α, cj,4)
∣∣∣∣} .

With the exact same proof in Lemma 8 and union bound, P{Γ} ≥ 1− 2
n3 .

Let t = 2

(
log n

∑
j

(
ϕ(α, dj(R)) +

√
8maxi di(R) log n

∣∣∂ϕ
∂d
(α, cj,4)

∣∣)2)1/2

.

Then, by Hoeffding’s inequality, we have

P

{∣∣∣∣∣∑
j

(Aij −Rij)ϕ(α, dj,−i(A))

∣∣∣∣∣ ≥ t

}

≤ PΓ

{∣∣∣∣∣∑
j

(Aij −Rij)ϕ(α, dj,−i(A))

∣∣∣∣∣ ≥ t

}
+ P{ΓC}

≤ 2 exp

−
4 log n

∑
j

(
ϕ(α, dj(R)) +

√
8maxi di(R) log n

∣∣∂ϕ
∂d
(α, cj,4)

∣∣)2∑
j

(
ϕ(α, dj(R)) +

√
8maxi di(R) log n

∣∣∂ϕ
∂d
(α, cj,4)

∣∣)2
+

2

n3

≤ 2 exp(−4 log n) +
2

n3

=
4

n3
. (61)

Bound for J in (59):

Under the event Γ,∣∣∣∣∣∑
j

Rij [ϕ(α, dj,−i(A))− ϕ(α, dj,−i(R))]

∣∣∣∣∣ ≤√8max
i

di(R) log n
∑
j

Rij

∣∣∣∣∂ϕ∂d (α, cj,4)
∣∣∣∣ .
(62)
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Thus, the inequality holds with probability at least 1− 2
n3 .

Bound for K in (59):

By mean value theorem,∣∣∣∣∣∑
j

Rij [ϕ(α, dj(R))− ϕ(α, dj,−i(R))]

∣∣∣∣∣ ≤∑
j

RijRij

∣∣∣∣∂ϕ∂d (α, cj,5)
∣∣∣∣ ≤∑

j

Rij

∣∣∣∣∂ϕ∂d (α, cj,5)
∣∣∣∣ ,

(63)

for some cj,5 ∈ [dj,−i(R), dj(R)] for each j = 1, . . . , n.

Bound for 1 in (58):

The assumptions of Lemma 2 are applied here. Note that assumptions 2 and 3 would imply that

dj(R) for all j are with the same order. This is also true for ϕ(α, dj(R)) and ∂ϕ
∂d
(α, dj(R)) for

all j, by Lemma 7. Hence, by assumption 1 of Lemma 2 together with the property 3 (7) of the

function ϕ, we combine the 4 bounds (60) – (63) to get a bound for numerator of 1 :∣∣∣∣∣∑
j

Aij ϕ(α, dj(A))−
∑
j

Rij ϕ(α, dj(A))

∣∣∣∣∣ ≤ C
√

max
i

di(R) log nϕ(α, di(R)) , (64)

with probability at least 1 − 10
n3 and C is a fixed constant independent of n. By Lemma 8 and

the triangular inequality,

1

ϕ(α, di(A))
≤ 1

ϕ(α, di(R))− |ϕ(α, di(A))− ϕ(α, di(R))|

≤ 1

ϕ(α, di(R))−
√

8maxi di(R) log n
∣∣∂ϕ
∂d
(α, cj,1)

∣∣ ,
with probability at least 1− 2

n4 . Therefore,

1 =

∣∣∣∣
∑

j Aij ϕ(α, dj(A))

ϕ(α, di(A))
−
∑

j Rij ϕ(α, dj(R))

ϕ(α, di(A))

∣∣∣∣ ≤ C
√
max

i
di(R) log n ,

with probability at least 1− 12
n3 .
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Bound for 2 in (58):

By Lemma 8 and the bound for 1
ϕ(α,di(A))

,

2 =

∣∣∣∣
∑

j Rij ϕ(α, dj(R))

ϕ(α, di(A))
−
∑

j Rij ϕ(α, dj(R))

ϕ(α, di(R))

∣∣∣∣
=
∑
j

Rij ϕ(α, dj(R))
|ϕ(α, di(A))− ϕ(α, di(R))|
ϕ(α, di(A))ϕ(α, di(R))

≤
∑
j

Rij ϕ(α, dj(R))

√
8maxi di(R) log n

∣∣∂ϕ
∂d
(α, ci,0)

∣∣
ϕ(α, di(R))

(
ϕ(α, di(R))−

√
8maxi di(R) log n

∣∣∂ϕ
∂d
(α, ci,0)

∣∣)
≤Cdi(R)

√
4maxi di(R) log n

∣∣∂ϕ
∂d
(α, ci,0)

∣∣
ϕ(α, di(R))

≤C
√

max
i

di(R) log n , (65)

with probability at least 1− 2
n4 .

Bound for 1 + 2 in (58):

Combining (64) and (65), we get the entrywise bound. For any i,∣∣∣∣
∑

j Aij ϕ(α, dj(A))

ϕ(α, di(A))
−
∑

j Rij ϕ(α, dj(R))

ϕ(α, dj(R))

∣∣∣∣ ≤ C
√
max

i
di(R) log n ,

with probability at least 1− 14
n3 . Finally, by union bound,

∥DA −DR∥ ≤ C
√
max

i
di(R) log n ,

with probability at least 1− 14
n2 .
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Proof of Proposition 7

Rewrite the left hand side as:∥∥∥D−1/2
A −D

−1/2
R

∥∥∥ =

∥∥∥∥(D−1
A −D−1

R

) (
D

−1/2
A +D

−1/2
R

)−1
∥∥∥∥

=

∥∥∥∥(DA −DR) (DADR)
−1
(
D

−1/2
A +D

−1/2
R

)−1
∥∥∥∥

≤ ∥DA −DR∥ ·
∥∥D−1

A

∥∥ · ∥∥D−1
R

∥∥ · ∥∥∥∥(D−1/2
A +D

−1/2
R

)−1
∥∥∥∥ .

Condition on the event ∥DA −DR∥ ≤ C
√
n log n ,∥∥∥∥(D−1/2

A +D
−1/2
R

)−1
∥∥∥∥ = max

i

(
(DA)

−1/2
ii + (DR)

−1/2
ii

)−1

=
(
min

i
(DA)

−1/2
ii + (DR)

−1/2
ii

)−1

≤
(
min

i
(DR)

−1/2
ii + ((DR)ii + |(DA)ii − (DR)ii|)−1/2

)−1

≤ C
(
min

i
(DR)

−1/2
ii

)−1

≤ Cmax
i

√
di(R)

≤ Cmin
i

√
di(R) .

Similarly, ∥∥D−1
A

∥∥ =
(
min

i
(DA)ii

)−1

≤ C
(
min

i
di(R)

)−1

.

Combining the results and applying Lemma 9, we have∥∥∥D−1/2
A −D

−1/2
R

∥∥∥ ≤ C
√
max

i
di(R) log n

(
min

i
di(R)

)−3/2

,

with probability at least 1− 14
n2 . ■

Proof of Proposition 4

The fact that Theorem 1 and Theorem 2 holds for T̃ follows trivially from the proofs of Theorem

1, Lemma 2 and Theorem 2. ■
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